Field evaluation of Rocket design stovesfuelwood use and user preferences

Jin Wang & Erika Tyler Edwin Adkins, Vijay Modi Columbia University Ruhiira, Uganda; Mbola, Tanzania; Mwandama Malawi 2008 - 2009

precipitation and pop density

n's: Bonsaaso 298, Ikaram 262, Mbola 273, Mwandama 291, Potou 251, Ruhiira 296, Tiby 190

What was the goal of this work?

- Piggy back "testing" as a means of both sensitization AND data gathering
- field teams worked with home cooks, no emissions measurements
- make the case for CDM credits
- convince project staff that a \$10 stove could save fuelwood and be adopted
- Test stoves that have a supply chain

Test Sites: all rural, UG, TZ, MW

- East Africa: highlands get cold at night
- E. Africa: households are dispersed
- 98% of hh use 3-stone fire (from a 300 hh survey in each site)
- nearly 95% of all wood/crop residue used is gathered and not purchased
- Not significant charcoal use

Cookstoves Tested

Three-stone fire

Traditional

Stovetec/Envi B1100

Envirofit, G3300

Imported

Ugastove, UG

Advent, TZ

Chitetezo, MWI

Local

Methodology

- Pick foods commonly cooked, modified CCT
- Households randomly selected for testing
- Households given 4 weeks to use prior to measurement
- All tests were "paired", wood, fuel, cook, food same
- Min of 24 sets of tests each repeated twice
- Performed household qualitative survey after allowing use

	Uganda	Tanzania	Malawi
Stoves Tested	StoveTec, Ugastove	StoveTec, Envirofit, Advent	Chitetezo
Foods Tested	Plaintains	Maize flour, Beans	Rice

Burnrate (kg fuelwood/hour)

	Ugali	Rice	Matoke	Starches	Beans	All foods
Advent	(1 .32 (24)			1.32 (24)	.91 (36)	1.07 (60)
Chitetezo		.86 (88)		.86 (88)		.86 (88)
Envirofit	1.49 (24)			1.49 (24)	1.16 (35)	1.29 (59)
StoveTec	1.55 (24)		1.26 (60)	1.34 (84)	1.03 (36)	1.25 (120)
Three stone	3.05 (24)	1.26 (88)	2.25 (60)	1.86 (172)	1.67 (36)	1.82 (208)
Ugastove			• 93 (60)	.93 (60)		.93 (60)
All stoves	1.85 (96)	1.06 (176)	1.48	1.40 (452)	1.19 (143)	1.35 (595)

Specific Fuel Consumption (kg fuelwood/kg food)

	Ugali	Rice	Matoke	Starches	Beans	All foods
Advent	.58 (24)			.58 (24)	6.7 (36)	4.27 (60)
Chitetezo		.79 (88)		. 79 (88)		.79 (88)
Envirofit	.47 (24)			• 47 (24)	8.3 (36)	5.14 (60)
StoveTec	.45 (24)		.35 (60)	.38 (84)	6.9 (36)	2.32 (120)
Three stone	.88 (24)	.95 (88)	.59 (60)	. 81 (172)	10.7 (36)	2.52 (208)
Ugastove			.31 (60)	.31 (60)		.31 (60)
All stoves	.60 (96)	.87 (176)	.42 (180)	.63 (452)	8.1 (144)	2.44 (596)

Fuel savings for improved stoves relative to 3-stone fire 50% 46% 45% Indicates 38% most 40% 38% preferred 35% by villagers 32% 31% 30% 25% 20% 15% 15% 10% 5% 0% **StoveTec** Ugastove Chitetezo **StoveTec** Envirofit Advent (Rocket) Mbaula (Rocket) (Rocket) (Rocket) (Rocket) (ProBEC, clay liner) Ruhiira, Matoke Mwandama. Mbola (Average: ugali & beans) Rice Tanzania Uganda Malawi

Average Fuel Savings Compared to Three-stone Fire Ruhiira, Uganda

Average Increase in Cooking Time Compared to Three-stone Fire Ruhiira, Uganda

What users liked: TZ

What users disliked: TZ

Is variability due to stove user?

Percentage of users that would

buy cookstoves at specified price - Mbola, Tanzania

Decisive qualitative factors

- Perception of quality and warranty
- built-in skirt vs adjustable skirt
- Cooking time a major issue
- Height/stability of stove
- Less tending needs better
- Smoke emitted

Need statistically significant results

Next slides: Not statistically significant

- Question
- Does a \$10 stove reduce emissions enough to lower PM2.5 concentrations in the kitchen?
- What level of reductions in emissions and exposures lead to reductions in disease burdens?

Trying to construct a slide for policymakers

Test Hut – Sauri, Kenya

Similar to local kitchen in size and ventilation characteristics

Emissions (CO and PM2.5) monitoring at consistent distance from center of pot

Patricia Yiembe: extensive experience with firewood cook-stoves and local cooking practices

Improved Stove Types

Clay Rocket

(Rwanda)

Clay Liner

(Kenya

Clay Rocket w/ "pot skirt" & chimney (Rwanda)

Metal Rocket (Uganda)

PM2.5 and CO concentrations (3.5 hr mean)

Stove sales

- fuelwood pressure high, no purchased fuel, >60% below \$1/day
- Local tests/demos seem to create a buzz
- Ambassadors/Vendors
- Reduce capital risk
- Purchases at \$8-\$10 are high
- Group sales are VERY effective.

Some observations- Africa

- Need to offer users choice
- We don't have generalizable results
- 50 to 500 to 5,000 to 50,000 stoves
- Supply chains: tough challenge
- Warranties are critical to users
- Need lot more of stove trials to create a feedback loop between field and lab

Thanks to everyone involved!

- EI, NYC: Edwin Adkins, Erika Tyler, Rahul Kitchlu
- **MVP Ruhiira, Uganda:** David Siriri, Robert Ayesiga, Moses Nuwagaba, Mathias Kibosi, Nelson Tugume
- **MVP Mwandama, Malawi:** Joy Pankomera, Stevie Kazembe, Florida Mwale, Collins Chipagala, Maria Lupasa, Kingsley Mkwalula, Jacob Phiri
- **MVP Mbola, Tanzania:** Gerson Nyadzi, Stanley Kayabu, Gerald Ntiritobora, Juma Khalid, Bond Kayabu, Peter Saoke **UNDP**
- ProBEC Tabora: Mabhamba Majogoro
- Ceil & Michael E. Pulitzer Foundation

0 1 2 3 4 5 Kilometers

Average Fuel Savings Compared to Three-stone Fire Mbola, Tanzania

Average Fuel Savings Compared to Three-stone Fire Mbola, Tanzania

Average Increase in Cooking Time Compared to Three-stone Fire

Rank of Cookstoves in Order of Users' Preferences

Nearly all rank StoveTec and Envirofit as the top two choices
57% of cooks ranked the Advent last below the three-stone fire